

Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile

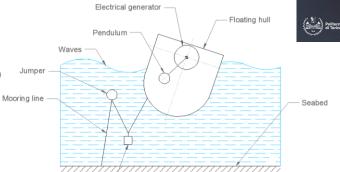
Progettazione e prototipazione del PeWEC 2

Torino, 14/12/2021

Sergej Antonello Sirigu, Giovanni Bracco, Giuliana Mattiazzo

Summary

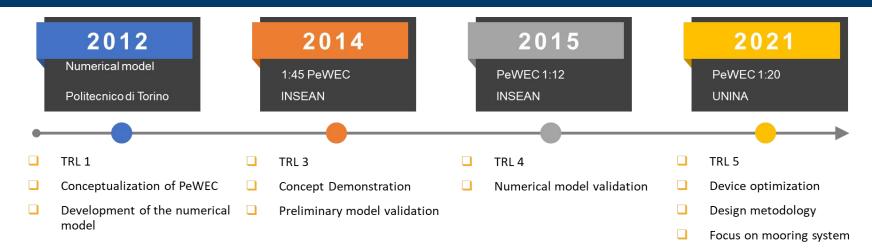
- The PeWEC device
- Technology roadmap
- Optimization and design process
- Mooring system
- Prototyping of the device
- Experimental campaign
- Next steps

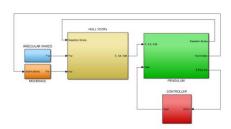

The PeWEC device

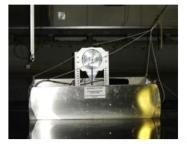
Highlights

- Pendulum Wave Energy Converter
- All energy conversion systems are inside a watertight hull
- Designed to work in the Mediterranean Sea

Subsystems


- Hull
- Pendulum
- Electro-mechanical Power Take Off (PTO)
- Mooring system





Technology roadmap

Project brief

Goals

- Reduction of the PeWEC Cost of Energy
- Design procedure of full-scale device
- Experimental campaign focused on mooring system

1 year WP1

- Resource Analysis
- Development of PeWEC
 optimization tool
- Design guidelines of the device

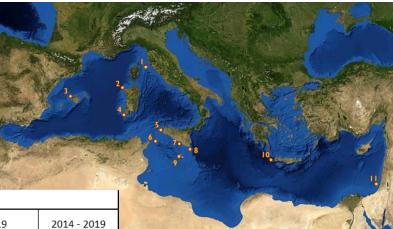
2 year WP2

- Prototyping of the scaled model
- CFD model of PeWEC
- Execution of the experimental campaign

3 year WP3

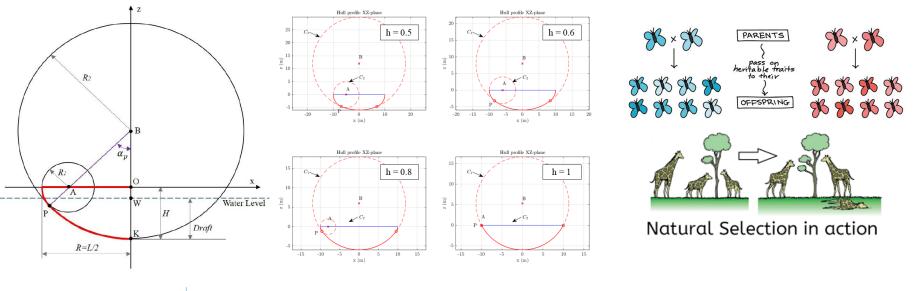
Validation of the PeWEC models

٠


Preliminary design of PeWEC full-scale

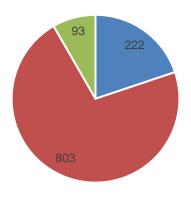
Resource analysis

- 11 sites in Mediterranean Sea
- Data simulated with validated ENEA model WAM and SWAN models
- Two spatial resolutions: 3.5 and 0.7 km

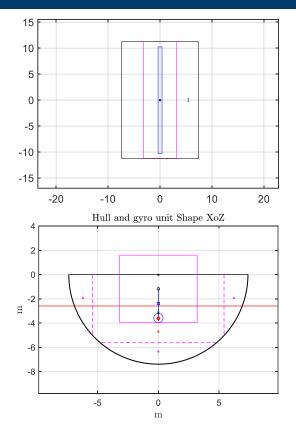

Power density kW/m							
Anno	2014	2015	2016	2017	2018	2019	2014 - 2019
P01 Isola D Elba	0.94	0.66	1.03	0.90	1.10	1.19	0.97
P02 N O Sardegna	6.15	6.83	6.50	8.36	6.23	9.10	7.20
P03 N Baleari	1.52	2.03	1.60	2.25	1.68	2.19	1.88
P04 S O Sardegna	4.54	5.70	4.62	6.18	4.48	7.26	5.46
P05 N O Sicilia	2.70	2.79	2.82	2.56	3.20	3.63	2.95
P06 Pantelleria	4.12	5.42	3.88	4.40	4.46	5.96	4.71
P07 S O Sicilia	2.09	2.40	2.19	1.97	2.48	2.74	2.31
P08 S Sicilia	2.69	2.86	3.00	2.26	2.92	3.56	2.89
P09 Malta	3.98	5.08	4.15	4.31	4.84	5.84	4.71
P10 O Creta	2.55	3.75	3.60	2.91	4.11	5.23	3.70
P11 Israele	1.24	2.35	2.61	1.73	2.48	2.43	2.15

PeWEC optimization tool

- 1. Detailed parametrization of the PeWEC
- 2. Development of genetic algorithm optimization tool
- 3. Techno-economic assessment: costs and productivity



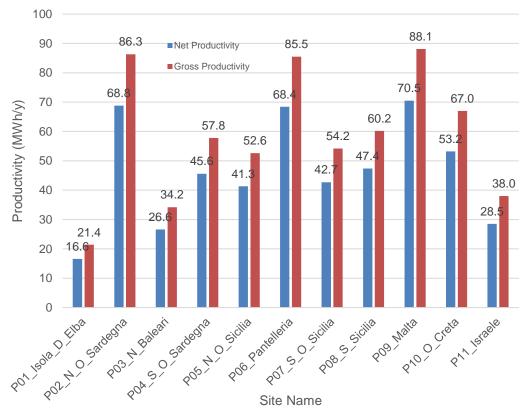
PeWEC device


- 1. Deployment site: Pantelleria
- 2. Tradeoff between CoE and Productivity
- 3. Hull and pendulum made in steel

property	Unit	Value
Hull length	m	14.8
Hull width	m	22.5
Hull height	m	7.4
Hull draft	m	4.8
Displacement mass	ton	1118
Installed power	kW	523
Resonance period	S	6

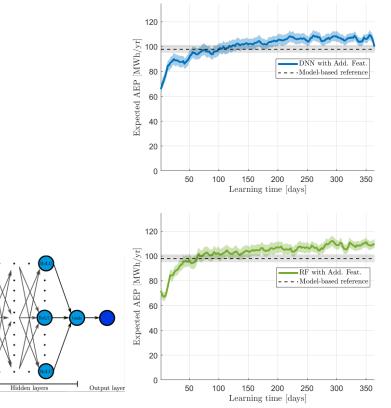
Mass distribution (ton)

• Hull • Ballast • Pendulum Unit



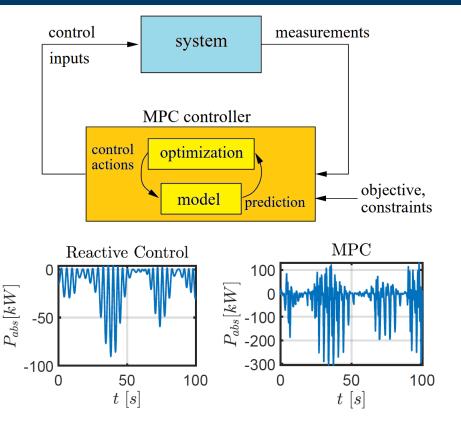
Productivity analysis

Site Name		• •	Gross productivity (MWh/y)
P01_Isola_D_Elba	0.974		
P02_N_O_Sardegna	7.2	68.8	86.3
P03_N_Baleari	1.88	26.6	34.2
P04_S_O_Sardegna	5.46	45.6	57.8
P05_N_O_Sicilia	2.95	41.3	52.6
P06_Pantelleria	4.7	68.4	85.5
P07_S_O_Sicilia	2.3	42.7	54.2
P08_S_Sicilia	2.89	47.4	60.2
P09_Malta	4.7	70.5	88.1
P10_O_Creta	3.7	53.2	67.0
P11_Israele	2.15	28.5	38.0



Control strategies – Data driven approach

Input laver


- Proposed approach: evolve the actual control on which the device is designed, letting it learn only from data the best actions to be taken
- The real data are gathered, processed, and used to train Deep Neural Networks and Random Forests models
- Optimize the control action on the basis of these datadriven models
- In less than 3 months → data-driven overcome the model-based reference.

Control strategies – Model Predictive Control

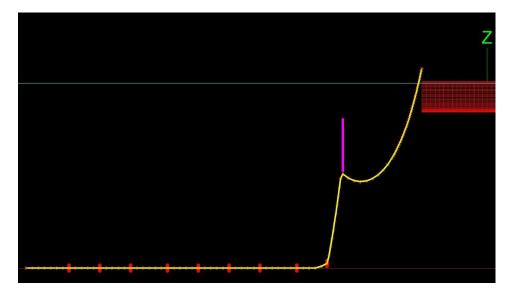
- A different approach could be used: the modelbased Model Predictive Control (MPC).
- MPC allows PeWEC to adopt the control action that maximize the energy absorbed respecting the technological constraints.
- The knowledge of the future allows actions that would permit additional absorption in more energetic scenarios.

Mooring system design procedure

A mooring system shall withstand in several meteocean condition and a design shall be accomplished according to standards. We are going to analyse the following rule from DNV

• DNV-OS-E301

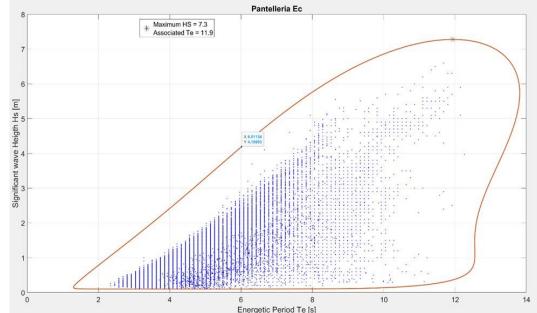
The withstanding capability shall be verified in the Limit States exposed besised.



Mooring system pre-design procedure

Goals:

- Low influence in operative waves
- Ultimate limit state verification
- parametric model
- Catenary mooring layout
- Orcaflex model

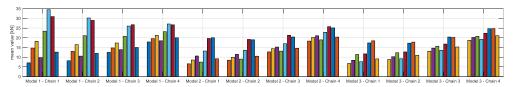

	d [mm]	w [kg/m]	d_eq [mm]	EA [kN]
Chain_080mm_studless	80	140	0.1512	646.4e3
Chain_100mm_studless	100	199	0.18	854.0e3
Chain_125mm_studless	125	310	0.225	1334.4e3
Chain_150mm_studless	150	448	0.27	1921.5e3

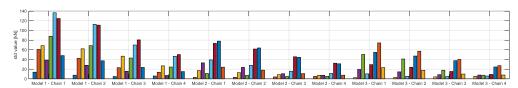
Mooring system pre-design procedure

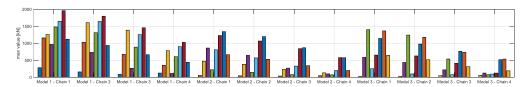
Each mooring configuration has been tested (according to <u>DNV standards</u>) with the **Environmental Contour** (100yrp) waves.

The waves have been considered also in different directions (0,45,90 deg from PeWEC bow).

Mooring system pre-design procedure

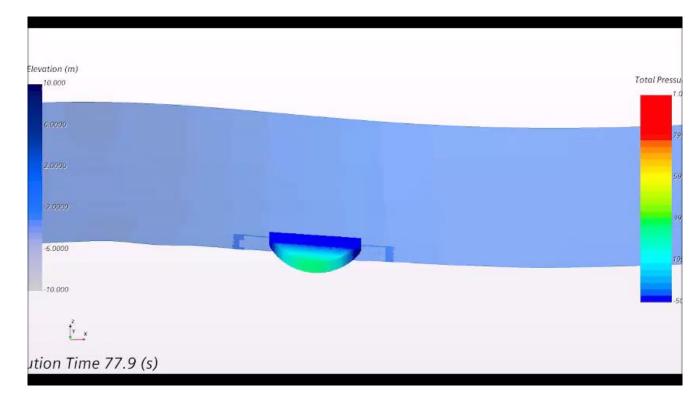

The mooring configurations have been evaluated considering several parameters:


1. Anchors uplift tension


influences the anchor type choice

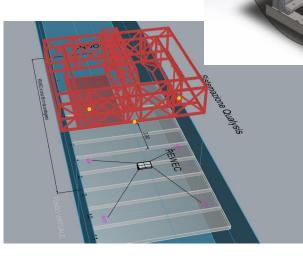
- 2. Fairleads tension Influences hull structural design
- 3. Device offset

Influences the electrical cable design



CFD model: virtual wave tank

- 1. Star CCM+
- 2. Moordyn for mooring dynamics


Experimental campaign

Goal

- Test the 1:25 device in operative and extreme conditions
- Evaluate loads on mooring system
- Validation of numerical and design tools

Features

- UNINA Towing Tank facility
- National Instrument DAQ
- Load cells at fairleads
- 27 pressure sensors on hull
- On-board IMU
- Qualisys Motion capture system (Wave tank)
- 7 capacitive wave probles

Prototipe

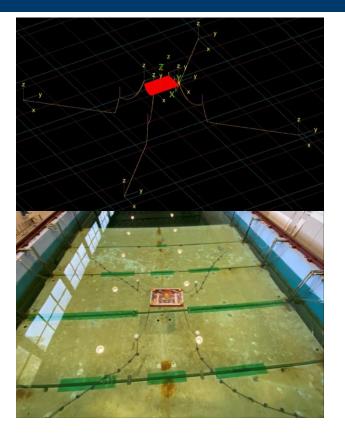
Inertial Measurements

Prototype

×	

DATI Modello Full-Scale	MSU	Design Value	Misura Sprimentale	err perc(%)
Lunghezza	[m]	0,592	0,592	0,0%
Larghezza	[m]	0,900	0,900	0,0%
Altezza	[m]	0,296	0,296	0,0%
Massa	[kg]	71,552	72,360	1,1%
COG (from deck)	[m]	-0,145	-0,139	4,1%
Linea di gallegg. (from deck)	[m]	-0,104	-0,100	3,7%
Pitch Inertia	[kg*m^ 2]	5,668	5,827	2,8%
Roll Inertia	[kg*m^ 2]	3,070	3,334	8,6%
Yaw Inertia	[kg*m^ 2]	7,388	7,388	0,0%
Draft	[m]	0,192	0,196	2,0%
COG(from waterline)		-0,041	-0,039	5,0%

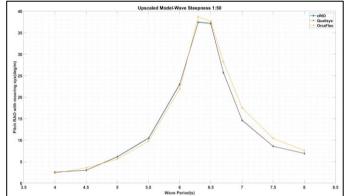
Experimental Setup

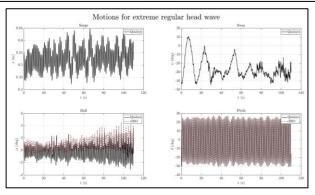

Model

- Orcaflex environment
- Full Scale model
- Pantelleria is the site of installation

Experimental layout

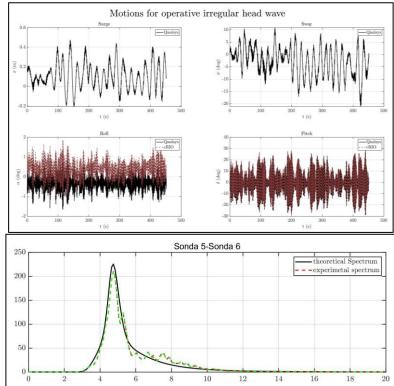
- Tank tests built to reproduce the real condition
- Scaled model (1:25)
- Artificial sea bed
- Motion capture system





Experimental Tests

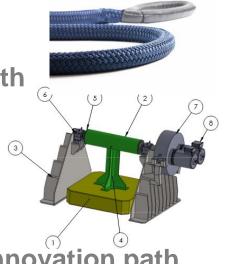
Test in regular waves



Experimental Tests

Test in irregular waves

Irregular (Tp=1.33s, Hs=7.42 cm)

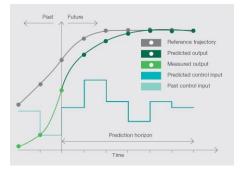


Next steps

Full-scale design

Cost reduction - innovation path

- Mooring system with polyester rope
- Concrete hull
- Cast iron or concrete pendulum
- Hydraulic Power Take off



Performance enhancement - innovation path

- Model Predictive Control (MPC)
- Optimized mooring system
- Robust optimization of the system
- Photovoltaic Panels on deck

Sergej Antonello Sirigu Giovanni Bracco Giuliana Mattiazzo Sergej.sirigu@polito.it

