

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER

AREAS OF APPLICATION

R. MANGANO, NAPOLI, 24TH JUNE 2024

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER ITALY WATER EMERGENCY

WATER EMERGENCY

- Climate change: Rising temperatures and changing weather patterns have led to prolonged droughts and reduced water availability.
- **Poor management of water resources:** high consumption rates exacerbate the problem.
- Inefficient use of water in agriculture, industry etc leads to unnecessary wastage.
- Water loss within the water distribution network Aging infrastructure and lack of maintenance result in significant water leakage.
- Low reuse of water (4% in Italy) Instead of recycling and reusing wastewater, it is often discarded, leading to a greater demand for fresh water.

Action required

- Raising awareness is crucial more responsible water use.
- Rain water collection.
- Infrastructure renewal.
- Diversifying water sources water generation with Desalination technologies.

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER DESALINATION APPLICATION

DESALINATION APPLICATION

Potable Water generation:

Island – Arid area – low availability of fresh water.

Industrial use:

Oil refinery / chemical plant / power plant: the industry requires big quantity of water for industrial use.

Process and service water: high quality standard is required.

Agriculture and irrigation:

Greenhouse and farming: require fresh water.

Tourism:

Resort, Hotel, Cruise and military ships: the hotel and cruises require potable water for the guest and the crew. **Emergency and critical situation:**

Natural disaster and temporary camp: it is required fresh water due to the temporary absence of network and infrastructure.

Source: Elaborazione The European House - Ambrosetti su dati Commissione Europea e GWI, 2024

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER DESALINATION APPLICATION

DESALINATION AS SUSTAINABLE SOLUTION

- By products reduction/recovery
- Brine management
- Coupling with Renewable Energy
- Energy efficiency
 - Reducing the footprint / maximizing the production
 - Engineering otpimization

Capacità a rischio per mancata sostituzione degli impianti
 Cumulato attuale

Elaborazione The European House - Ambrosetti su dati Global Water Intelligence, Autorità Idrica Toscana e Acquedotto Pugliese, 2024

".....a plant with maximum specific water production, minimum energy consumption at low CAPEX and OPEX"
"...possible saving of 1GW/day."

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER DESALINATION APPLICATION

SUSTAINABLE DESALINATION APPLICATION

The typical parameters considered at the preliminary stages of the development of a SWRO Plant can be summarized by the following:

- Seawater quality knowledge
- Site identification and Land availability
- Readiness of potable water infrastructures and power availability
- Equipment selection
- Environmental and social viability

SUSTAINABLE DESALINATION APPLICATION – 3 CASE STUDY

- 1. Seawater quality and intake location
- 2. Footprint multiple level building UF configuration
- 3. RO section optimization

SEAWATER QUALITY AND INTAKE LOCATION – ROLE OF THE TEMPERATURE

Optimization of the RO system – size of the RO racks and distribution of 1st RO pass and 2nd RO pass system.

SEAWATER QUALITY AND INTAKE LOCATION – ROLE OF THE PRETREATMENT

	Secon	idary
1.1	Filtra	tion
	$\bigcirc \rightarrow$	
+	Pressurized DMF	
*	Flessulized Divir	T TESSUITZEU DIVI
	 ≟ →	
+	Gravity DMF	
	Gravity DMF	Pressurized DMF
	$\square \rightarrow$	
	Pressurized UF/MF	

Submerged UF/MF

Parameters				
Туре	DAF+DMF	DAF+UF	DMF	UF
Recovery (%)	96.00	93.00	98.00	95
Ability to treat high water TSS (≥30 ppm)	Yes	Yes	Yes – in- crease in Backwash frequency	Yes – in- crease in CEB and CIP frequency
Availability during Red Tide	Yes	Yes	Νο	No
Sludge Treatment	Required – dedicated treatment for the DAF sludge	Required – dedicated treatment for the DAF sludge	Required	Required

SEAWATER QUALITY AND INTAKE LOCATION – ROLE OF THE PRETREATMENT

Technology	Total Suspended Solids (TSS) removal capability		Algae removal capability		Hydrocarbon removal capability
DAF	+	only organic TSS	++		++
DMF	+++	up to 50 ppm - 80% reduction	+	Reduction in production	-
UF	++	up to 12 -15 ppm	+	Reduction in production	-

UltraFiltration (UF)

Dual Media Filter (DMF) (gravity/pressurized)

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER SUSTAINABLE DESALINATION

FOOTPRINT ANALYSIS - MULTIPLE LEVEL BUILDING

The area and land requirement of SWRO desalination plant depends on:

- SWRO capacity
- Seawater and Product water quality

Three major systems having high footprint requirements

- Pre-treatment
- RO island
- Potable water storage tanks

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER SUSTAINABLE DESALINATION

FOOTPRINT ANALYSIS – MULTIPLE LEVEL BUILDING

- Expansion of the plant vertically
- Common in power generation industry
- Few cases in SWRO application
- Difficult O&M concept

FOOTPRINT ANALYSIS – UF CONFIGURATION

FOOTPRINT ANALYSIS – UF CONFIGURATION

Advantages:

- Quality of UF permeate is high
- Easy to feed the RO

Disadvantages:

- Contamination in the Treated water tank
- Need of Cartridge filter required before RO
- Break of the UF residual pressure
- Relatively high foot print (tank capacity)
- UF design for peak flux

Advantages

- No microbiological contamination
- No Cartridge Filter and Booster Pump
- Lower footprint and Lower energy consumption **Disadvantages**
- Installation of dedicated backwash tank overdesign of the UF **Challenges**:
- Maintain constant RO production during UF backwash and cleaning
- UF shall operate at higher pressure: ΔP across the membrane + NPSH

CONSULTING

DRIMARY SECONDARY INTAKE AND SCREENING FILTRATION \rightarrow UF TREATED UF TREATED WATER CARTRIDGE FILTER SCREEN WATER TANK ULTRAFILTRATION **BOOSTER PUMP** SECONDARY PRIMARY **REVERSE OSMOSIS** INTAKE AND SCREENING FILTRATION SCREEN **REVERSE OSMOSIS** ULTRAFILTRATION **Parameters** UF IN LINE UF Recovery (%) 95 95 **Chlorine Tolerance** Very Good Very Good Guaranteed Filtrate quality - SDI 95% of time <3 <3 Guaranteed Filtrate quality - SDI 100% of <4 <4 time UF treated water break tank Required Not required UF treated water Booster Pump Required Not required

Required

Cartridge Filter before SWRO feed

C

0

Not required

		UF	IN LINE UF
APEX	UF Treated water tank	1	\downarrow
	UF treated water Booster Pump	1	\downarrow
	UF feed Pump	\downarrow	↑
	Cartridge Filter	1	\downarrow
	Dedicated BW tank	\downarrow	↑
	Footprint	1	\downarrow
PEX	UF treated water Booster Pump	1	\downarrow
	UF feed Pump	\downarrow	↑
	Cartridge Filter	1	\downarrow
	RO CIP frequency	1	\downarrow

FOOTPRINT ANALYSIS – UF CONFIGURATION

RO SECTION OPTIMIZATION

Spec	ific Power Consumption	
90%		
80%		
70%		
60%		
50%		
40%		
30%		
20%		
10%		
0%	45 TDS 30 C	
thers	4%	
VAC and lightening	3%	
W Pumps	2%	
ost-Treatment	2%	
O system	74%	
take and Pre-Treatment	15%	

NATIONAL WORKSHOP ON DESALINATION AND RE-USE OF TREATED WATER SUSTAINABLE DESALINATION

RO SECTION OPTIMIZATION - RO FEED PUMPS MAIN POSSIBLE CONFIGURATION Pressure Center (ring) Pump to RO rack(s) General **collectors** / line **AVAILABILITY RISK: AVAILABILITY RISK: PIPE: 10-20% PIPE: 25-50% PUMPS: 0% PUMPS: 0%** One pump for one rack • Pumps **EFFICIENCY REDUNDANCY:** N-1: OK same size MAXIMUM CAPACITY: MEDIUM N+1: OK MIDDLE CAPACITY: MEDIUM LOW CAPACITY: MEDIUM **EFFICIENCY REDUNDANCY: REDUNDANCY: MAXIMUM CAPACITY: HIGHEST** N-1: OK N-1: TBD MIDDLE CAPACITY: MEDIUM N+1: OK N+1: TBD LOW CAPACITY: LOW CASE BY CASE STUDY One pump for two rack **EFFICIENCY** Pumps **REDUNDANCY:** MAXIMUM CAPACITY: MEDIUM N-1: NO different size MIDDLE CAPACITY: LOW N+1: NO LOW CAPACITY: MEDIUM **ONLY VALID IF N+2 OR N-2 EFFICIENCY REDUNDANCY: REDUNDANCY: MAXIMUM CAPACITY: HIGH** N-1: OK **AVAILABILITY RISK:** N-1: TBD N+1: OK MIDDLE CAPACITY: HIGH N+1: TBD **PIPE: 10-20%** LOW CAPACITY: HIGH CASE BY CASE STUDY PUMPS: 10-20%

17

RO SECTION OPTIMIZATION - RO FEED RACK MAIN POSSIBLE CONFIGURATIONS

CONCLUSIONS

".....a sustainable SWRO plant with maximum specific water production, minimum energy consumption at low CAPEX and OPEX..."

Engineering optimization

- water and land infrastructure

THANK YOU FOR YOUR ATTENTION!

Roberto Mangano Roberto.mangano@ilf.com T +971 (0)50 111 24 76

WWW.ILF.CON